Pattern Recognition and Application (USB)

₹950.00
In stock



Media Storage Type : 32 GB USB Stick

NPTEL Subject Matter Expert : Prof. P.K. Biswas

NPTEL Co-ordinating Institute : IIT Kharagpur

NPTEL Lecture Count : 40

NPTEL Course Size : 12 GB

NPTEL PDF Text Transcription : Available and Included

NPTEL Subtitle Transcription : Available and Included (SRT)


Lecture Titles:

Lecture 1 - Introduction
Lecture 2 - Feature Extraction - I
Lecture 3 - Feature Extraction - II
Lecture 4 - Feature Extraction - III
Lecture 5 - Bayes Decision Theory
Lecture 6 - Bayes Decision Theory (Continued.)
Lecture 7 - Normal Density and Discriminant Function
Lecture 8 - Normal Density and Discriminant Function (Continued.)
Lecture 9 - Bayes Decision Theory - Binary Features
Lecture 10 - Maximum Likelihood Estimation
Lecture 11 - Probability Density Estimation
Lecture 12 - Probability Density Estimation (Continued.)
Lecture 13 - Probability Density Estimation (Continued.)
Lecture 14 - Probability Density Estimation (Continued.)
Lecture 15 - Probability Density Estimation (Continued.)
Lecture 16 - Dimensionality Problem
Lecture 17 - Multiple Discriminant Analysis
Lecture 18 - Multiple Discriminant Analysis (Tutorial)
Lecture 19 - Multiple Discriminant Analysis (Tutorial)
Lecture 20 - Perceptron Criterion
Lecture 21 - Perceptron Criterion (Continued.)
Lecture 22 - MSE Criterion
Lecture 23 - Linear Discriminator (Tutorial)
Lecture 24 - Neural Networks for Pattern Recognition
Lecture 25 - Neural Networks for Pattern Recognition (Continued.)
Lecture 26 - Neural Networks for Pattern Recognition (Continued.)
Lecture 27 - RBF Neural Network
Lecture 28 - RBF Neural Network (Continued.)
Lecture 29 - Support Vector Machine
Lecture 30 - Hyperbox Classifier
Lecture 31 - Hyperbox Classifier (Continued.)
Lecture 32 - Fuzzy Min Max Neural Network for Pattern Recognition
Lecture 33 - Reflex Fuzzy Min Max Neural Network
Lecture 34 - Unsupervised Learning - Clustering
Lecture 35 - Clustering (Continued.)
Lecture 36 - Clustering using minimal spanning tree
Lecture 37 - Temporal Pattern recognition
Lecture 38 - Hidden Markov Model
Lecture 39 - Hidden Markov Model (Continued.)
Lecture 40 - Hidden Markov Model (Continued.)

Write Your Own Review
You're reviewing:Pattern Recognition and Application (USB)