NOC:Point Set Topology

₹950.00
In stock



Media Storage Type : 32 GB USB Stick

NPTEL Subject Matter Expert : Prof. Ronnie Sebastian

NPTEL Co-ordinating Institute : IIT Bombay

NPTEL Lecture Count : 42

NPTEL Course Size : 2.9 GB

NPTEL PDF Text Transcription : Available and Included

NPTEL Subtitle Transcription : Available and Included (SRT)


Lecture Titles:

Lecture 1 - Definition and examples of topological spaces
Lecture 2 - Examples of topological spaces
Lecture 3 - Basis for topology
Lecture 4 - Subspace Topology
Lecture 5 - Product Topology
Lecture 6 - Product Topology (Continued...)
Lecture 7 - Continuous maps
Lecture 8 - Continuity of addition and multiplication maps
Lecture 9 - Continuous maps to a product
Lecture 10 - Projection from a point
Lecture 11 - Closed subsets
Lecture 12 - Closure
Lecture 13 - Joining continuous maps
Lecture 14 - Metric spaces
Lecture 15 - Connectedness
Lecture 16 - Connectedness (Continued...)
Lecture 17 - Connectedness (Continued...)
Lecture 18 - Connected components
Lecture 19 - Path connectedness
Lecture 20 - Path connectedness (Continued...)
Lecture 21 - Connectedness of GL(n,R)^+ (math symbol)
Lecture 22 - Connectedness of GL(n,C), SL(n,C), SL(n,R)
Lecture 23 - Compactness
Lecture 24 - Compactness (Continued...)
Lecture 25 - Compactness (Continued...)
Lecture 26 - Compactness (Continued...)
Lecture 27 - SO(n) is connected
Lecture 28 - Compact metric spaces
Lecture 29 - Lebesgue Number Lemma
Lecture 30 - Locally compact spaces
Lecture 31 - One point compactification
Lecture 32 - One point compactification (Continued...)
Lecture 33 - Uniqueness of one point compatification
Lecture 34 - Part 1 : Quotient topology
Lecture 35 - Part 2 : Quotient topology on G/H
Lecture 36 - Part 3 : Grassmannian
Lecture 37 - Normal topological spaces
Lecture 38 - Urysohn's Lemma
Lecture 39 - Tietze Extension Theorem
Lecture 40 - Regular and Second Countable spaces
Lecture 41 - Product Topology on mathbb{R}^{mathbb{N}}
Lecture 42 - Urysohn's Metrization Theorem

Write Your Own Review
You're reviewing:NOC:Point Set Topology