NOC:Microwave Remote Sensing in Hydrology

₹950.00
In stock



Media Storage Type : 32 GB USB Stick

NPTEL Subject Matter Expert : Prof. J. Indu

NPTEL Co-ordinating Institute : IIT Bombay

NPTEL Lecture Count : 58

NPTEL Course Size : 11 GB

NPTEL PDF Text Transcription : Available and Included

NPTEL Subtitle Transcription : Available and Included (SRT)


Lecture Titles:

Lecture 1 - Syllabus
Lecture 2 - History Of Microwave Remote Sensing
Lecture 3 - Overview Of Active and Passive Microwave Remote Sensing
Lecture 4 - Fundamentals Laws Of Remote Sensing
Lecture 5 - Tutorial 1: Python Programming From Beginner Perspective
Lecture 6 - Scattering Of Microwaves
Lecture 7 - Synthetic Aperture Radars - Basics
Lecture 8 - Sar Image Processing - Fundamental Terminologies
Lecture 9 - Working With Sar Imagery
Lecture 10 - Understanding Radar Equation
Lecture 11 - Tutorial 2 : Exploring Alos Palsar Data In Python
Lecture 12 - Understanding Radar Imagery
Lecture 13 - Tutorial 3: Introduction To SNAP
Lecture 14 - Doppler Shift
Lecture 15 - Speckle
Lecture 16 - Speckle - How To Handle
Lecture 17 - Tutorial 4 Part 1: Plotting In 1 D Using Python
Lecture 18 - Tutorial 4 Part 2: Plotting In 2 D Using Python
Lecture 19 - Tutorial 4 Part 3: Statistics Using Python
Lecture 20 - Tutorial 4 Part 4: Hypothesis Tesing Using Python
Lecture 21 - Sar Image Pre Processing
Lecture 22 - Sar Image Texture
Lecture 23 - Texture For Image Classification
Lecture 24 - Polarization
Lecture 25 - Tutorial 5 Part 1: Speckle Filtering Using Python
Lecture 26 - Tutorial 5 Part 2: Speckle Filtering Using Python Using Gaussian Filter
Lecture 27 - Numerical On Radar Remote Sensing
Lecture 28 - Numerical On Radar Remote Sensing
Lecture 29 - Image Classification - Basics
Lecture 30 - Supervised Classification
Lecture 31 - Maximum Likelihood Classification
Lecture 32 - Tutorial 6 Part 1: Sar Image Pre-processing
Lecture 33 - Tutorial 6 Part 2: Maximum Likelihood Classification In Snap
Lecture 34 - Unsupervised Classification And Accuracy Assessment
Lecture 35 - Fuzzy Classification
Lecture 36 - Tutorial 7 Part 1: Working With Grace Data In Python
Lecture 37 - Tutorial 7 Part 2: Altimetry Data In Python
Lecture 38 - Tutorial 7 Part 3: Swot Mission For Altimetry
Lecture 39 - Radars In Hydrology
Lecture 40 - Applications Of Radar Remote Sensing In Hydrology
Lecture 41 - Doppler Weather Radar
Lecture 42 - Tutorial 8 Part 1: Doppler Weather Radar Data Visualization And Precipitation Estimation
Lecture 43 - Tutorial 8 Part 2: Doppler Weather Radar Data Visualization And Precipitation Estimation
Lecture 44 - Radar Altimetry
Lecture 45 - Measuring Soil Moisture And Terrestrial Water Storage Using Radar Remote Sensing
Lecture 46 - Tutorial 9: Handling Passive Microwave Obsevations
Lecture 47 - Fundamentals Of Passive Microwave Remote Sensing - Part 1
Lecture 48 - Fundamentals Of Passive Microwave Remote Sensing - Part 2
Lecture 49 - Applications Of Passive Microwave Remote Sensing In Hydrology
Lecture 50 - Passive Microwave Radiometers And Their Applications
Lecture 51 - Tutorial 10: Processing Satellite Precipitation Data Using Python
Lecture 52 - Introduction To The Basics Of Sar Intereferometry
Lecture 53 - Sar Interferometry (Insar) And Applications
Lecture 54 - Introduction To Other Modes Of Sar Interferometry And Applications - DInSAR, PSInSAR and DEM's
Lecture 55 - Tutorial 11: Sar Interferometry Processing Using Snaphu
Lecture 56 - Tutorial 12 Part 1: Hydrologic Modelling Using Microwave Remote Sensing
Lecture 57 - Tutorial 12 Part 2: Introduction To Swat+ Hydrological Model
Lecture 58 - Tutorial 12 Part 3: Introductory Tutorial On Vic Hydrological Model

Write Your Own Review
You're reviewing:NOC:Microwave Remote Sensing in Hydrology