NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) - Part 2
Media Storage Type : 32 GB USB Stick
NPTEL Subject Matter Expert : Prof. Anurag Tripathi
NPTEL Co-ordinating Institute : IIT Madras
NPTEL Lecture Count : 39
NPTEL Course Size : 2.7 GB
NPTEL PDF Text Transcription : Available and Included
NPTEL Subtitle Transcription : Available and Included (SRT)
Lecture Titles:
Lecture 1 - Scattering Matrix
Lecture 2 - Scattering Matrix (Continued...)
Lecture 3 - Scattering Matrix (Continued...)
Lecture 4 - Creating single particle states - 1
Lecture 5 - Creating single particle states - 2
Lecture 6 - Annihilating single particle states
Lecture 7 - Creating Multiparticle States
Lecture 8 - LSZ reduction
Lecture 9 - LSZ reduction (Continued...)
Lecture 10 - S matrix
Lecture 11 - S matrix (Continued...)
Lecture 12 - S matrix (Continued...)
Lecture 13 - Pole and residue of the propagator
Lecture 14 - Kallen-Lehmann spectral representation
Lecture 15 - Kallen-Lehmann spectral representation (Continued...)
Lecture 16 - High Energy Experiment Setup - 1
Lecture 17 - High Energy Experiment Setup - 2
Lecture 18 - Scattering cross-section
Lecture 19 - Differential cross-section
Lecture 20 - 2-2 scattering cross-section
Lecture 21 - Loop diagrams - 1
Lecture 22 - Wick rotated Green's functions
Lecture 23 - UV divergences - Part 1
Lecture 24 - UV divergences - Part 2
Lecture 25 - UV divergences - Part 3
Lecture 26 - Explicit evalutation of Feynman integrals
Lecture 27 - Few more Feynman integrals
Lecture 28 - UV Singularity structure in dimensional regularization
Lecture 29 - Renormalization - Part 1
Lecture 30 - Renormalization - Part 2
Lecture 31 - Renormalization - Part 3
Lecture 32 - Renormalization - Part 4
Lecture 33 - Renormalization - Part 5
Lecture 34 - Renormalization Group Equation - 1
Lecture 35 - Renormalization Group Equation - 2
Lecture 36 - Renormalization Group Equation - 3
Lecture 37 - Solution of Callan Symanzik Equation
Lecture 38 - UV and IR fixed points and Asymptotic Freedom
Lecture 39 - Behaviour near fixed point