NOC:Foundations and Applications of Machine Learning (Bengali)
Media Storage Type : 32 GB USB Stick
NPTEL Subject Matter Expert : Prof. Adway Mitra
NPTEL Co-ordinating Institute : IIT Kharagpur
NPTEL Lecture Count : 40
NPTEL Course Size : 3.5 GB
NPTEL PDF Text Transcription : Available and Included
NPTEL Subtitle Transcription : Available and Included (SRT)
Lecture Titles:
Lecture 1 - AI/ML চারপাশের নানা উদাহরণ
Lecture 2 - AI/ML à¦à¦° উপকরণ
Lecture 3 - Supervised and Unsupervised Learning (ততà§à¦¤à§à¦¬à¦¾à¦¬à¦§à¦¾à¦¨à§‡ ও ততà§à¦¤à§à¦¬à¦¾à¦¬à¦§à¦¾à¦¨à¦¹à§€à¦¨ শিকà§à¦·à¦¾)
Lecture 4 - ML Model ও Algorithm/লেকচার 04 : à¦à¦®à¦à¦² মডেল ও অà§à¦¯à¦¾à¦²à¦—রিদম
Lecture 5 - AI/ML problem -à¦à¦° গঠন /à¦à¦†à¦‡/à¦à¦®à¦à¦² সমসà§à¦¯à¦¾ - à¦à¦° গঠন
Lecture 6 - K-nearest-neighbor classification/regression/K-নিকটবরà§à¦¤à§€-পà§à¦°à¦¤à¦¿à¦¬à§‡à¦¶à§€ শà§à¦°à§‡à¦£à§€à¦¬à¦¿à¦à¦¾à¦—/রিগà§à¦°à§‡à¦¶à¦¨
Lecture 7 - নৈপà§à¦£à§à¦¯à§‡à¦° পরিমাপ : Accuracy, Precision, Recall, Confusion
Lecture 8 - Discriminative Feature Selection
Lecture 9 - Decision Tree Algorithm/সিদà§à¦§à¦¾à¦¨à§à¦¤à¦²à¦¤à¦¿à¦•à¦¾
Lecture 10 - Classifier -à¦à¦° সমষà§à¦Ÿà¦¿ ও Random Forests
Lecture 11 - Probability Theory িফের Îদখ
Lecture 12 - Bayesian à¦à¦¬à¦‚ Naïve Bayes Classifier
Lecture 13 - Linear Algebra িফের Îদখা
Lecture 14 - Linear Classifiers à¦à¦¬à¦‚ Perceptron Algorithm
Lecture 15 - Multi-class Linear Classifier à¦à¦¬à¦‚ Logistic Regression
Lecture 16 - Optimization িফের Îদখা
Lecture 17 - Linear (সরল) ও Regularized (পিরেশািধত) Regression
Lecture 18 - Max-margin Linear Classification/সেবাЗκ বÒবধােনর ÎϜণীিবà¦à¦¾à¦œà¦¨
Lecture 19 - কৃÎÏম ѹায়à§à¦¤Ï´/Basic Neural Networks
Lecture 20 - Neural Network গঠন ও Backpropagation
Lecture 21 - Overfitting and Underfitting
Lecture 22 - Boosting-à¦à¦° মাধÒেম সমΜÑবд অনà§à¦®à¦¾à¦¨
Lecture 23 - Data র মাÏা (dimensionality) িনয়ϴণ
Lecture 24 - লেকচার ২৪ঃ শà§à¦°à§‡à¦£à§€ ও বৈশিষà§à¦Ÿà§‡à¦° মানের অসামà§à¦¯
Lecture 25 - Supervised Learning অিà¦à¦¯à¦¾à¦¨
Lecture 26 - Hierarchical Clustering/সà§à¦¤à¦°à¦à¦¿à¦¤à§à¦¤à¦¿à¦• গোষà§à¦ ীকরণ
Lecture 27 - K-means Clustering/ K-গড় গোষà§à¦ ীকরণ
Lecture 28 - Evaluation of Clustering/গোষà§à¦ ীকরণের মূলà§à¦¯à¦¾à§Ÿà¦¨
Lecture 29 - Mean-shift à¦à¦¬à¦‚ DB-Scan গোষà§à¦ ীকরণ
Lecture 30 - Graph-based Clustering/গোষà§à¦ ীকরণ
Lecture 31 - Time-series/সময়কà§à¦°à¦®à§‡à¦° বিশà§à¦²à§‡à¦·à¦£
Lecture 32 - বà§à¦¯à¦¤à¦¿à¦•à§à¦°à¦®à§€ উদাহরণ চিহà§à¦¨à¦¿à¦¤à¦•à¦°à¦£
Lecture 33 - Image/চিতà§à¦° বিশà§à¦²à§‡à¦·à¦£
Lecture 34 - Neural Features for Images
Lecture 35 - লিখিত Data ও à¦à¦¾à¦·à¦¾ বিশà§à¦²à§‡à¦·à¦£
Lecture 36 - Sequential Neural Models and Natural Language Processing
Lecture 37 - সৃষà§à¦Ÿà¦¿à¦®à§‚লক/Generative Models, Reinforcement Learning
Lecture 38 - Transfer Learning and Domain Adaptation
Lecture 39 - নীতি, নিরপেকà§à¦·à¦¤à¦¾ ও বোধগমà§à¦¯à¦¤à¦¾
Lecture 40 - Machine Learning for Climate Sciences