NPTEL : NOC:Engineering Mathematics-II (Mathematics)

Co-ordinators : Prof. Jitendra Kumar


Lecture 1 - Vector Functions

Lecture 2 - Vector and Scalar Fields

Lecture 3 - Divergence and Curl of a Vector Field

Lecture 4 - Line Integrals

Lecture 5 - Conservative Vector Field

Lecture 6 - Green’s Theorem

Lecture 7 - Surface Integral - I

Lecture 8 - Surface Integral - II

Lecture 9 - Stokes’ Theorem

Lecture 10 - Divergence Theorem

Lecture 11 - Complex Numbers and Functions

Lecture 12 - Differentiability of Complex Functions

Lecture 13 - Analytic Functions

Lecture 14 - Line Integral

Lecture 15 - Cauchy Integral Theorem

Lecture 16 - Cauchy Integral Formula

Lecture 17 - Taylor’s Series

Lecture 18 - Laurent’s Series

Lecture 19 - Singularities

Lecture 20 - Residue

Lecture 21 - Iterative Methods for Solving System of Linear Equations

Lecture 22 - Iterative Methods for Solving System of Linear Equations (Continued...)

Lecture 23 - Iterative Methods for Solving System of Linear Equations (Continued...)

Lecture 24 - Roots of Algebraic and Transcendental Equations

Lecture 25 - Roots of Algebraic and Transcendental Equations (Continued...)

Lecture 26 - Polynomial Interpolation

Lecture 27 - Polynomial Interpolation (Continued...)

Lecture 28 - Polynomial Interpolation (Continued...)

Lecture 29 - Polynomial Interpolation (Continued...)

Lecture 30 - Numerical Integration

Lecture 31 - Trigonometric Polynomials and Series

Lecture 32 - Derivation of Fourier Series

Lecture 33 - Fourier Series -Evaluation

Lecture 34 - Convergence of Fourier Series - I

Lecture 35 - Convergence of Fourier Series - II

Lecture 36 - Fourier Series for Even and Odd Functions

Lecture 37 - Half Range Fourier Expansions

Lecture 38 - Differentiation and Integration of Fourier Series

Lecture 39 - Bessel’s Inequality and Parseval’s Identity

Lecture 40 - Complex Form of Fourier Series

Lecture 41 - Fourier Integral Representation of a Function

Lecture 42 - Fourier Sine and Cosine Integrals

Lecture 43 - Fourier Cosine and Sine Transform

Lecture 44 - Fourier Transform

Lecture 45 - Properties of Fourier Transform

Lecture 46 - Evaluation of Fourier Transform - Part 1

Lecture 47 - Evaluation of Fourier Transform - Part 2

Lecture 48 - Introduction to Partial Differential Equations

Lecture 49 - Applications of Fourier Transform to PDEs - Part 1

Lecture 50 - Applications of Fourier Transform to PDEs - Part 2

Lecture 51 - Laplace Transform of Some Elementary Functions

Lecture 52 - Existence of Laplace Transform

Lecture 53 - Inverse Laplace Transform

Lecture 54 - Properties of Laplace Transform

Lecture 55 - Properties of Laplace Transform (Continued...)

Lecture 56 - Properties of Laplace Transform (Continued...)

Lecture 57 - Laplace Transform of Special Functions

Lecture 58 - Laplace Transform of Special Functions (Continued...)

Lecture 59 - Applications of Laplace Transform

Lecture 60 - Applications of Laplace Transform (Continued...)