NPTEL : NOC:Advanced Calculus For Engineers (Mathematics)

Co-ordinators : Prof. Somesh Kumar, Prof. Jitendra Kumar


Lecture 1 - Rolle's Theorem

Lecture 2 - Mean Value Theorem

Lecture 3 - Taylor's Formula (Single Variable)

Lecture 4 - Indeterminate Forms - Part 1

Lecture 5 - Indeterminate Forms - Part 2

Lecture 6 - Introduction to Limit

Lecture 7 - Evaluation of Limit

Lecture 8 - Continuity

Lecture 9 - First Order Partial Derivatives

Lecture 10 - Higher Order Partial Derivatives

Lecture 11 - Differentiability - Part 1

Lecture 12 - Differentiability - Part 2

Lecture 13 - Differentiability - Part 3

Lecture 14 - Differentiability - Part 4

Lecture 15 - Composite and Homogeneous Functions

Lecture 16 - Taylor's Theorem (Multivariable)

Lecture 17 - Maxima and Minima - Part 1

Lecture 18 - Maxima and Minima - Part 2

Lecture 19 - Maxima and Minima - Part 3

Lecture 20 - Maxima and Minima - Part 4

Lecture 21 - Formation of Differential Equations

Lecture 22 - First Order and First Degree DE

Lecture 23 - Exact Differential Equations

Lecture 24 - Integrating Factor

Lecture 25 - Linear Differential Equations

Lecture 26 - Introduction to Higher Order DEs

Lecture 27 - Complementary Function

Lecture 28 - Particular Integral

Lecture 29 - Cauchy-Euler Equations

Lecture 30 - Method of Variation of Parameters

Lecture 31 - Improper Integral - Part 1

Lecture 32 - Improper Integral - Part 2

Lecture 33 - Improper Integral - Part 3

Lecture 34 - Improper Integral - Part 4

Lecture 35 - Beta and Gamma Function - Part 1

Lecture 36 - Beta and Gamma Function - Part 2

Lecture 37 - Differentiation under the Integral Sign

Lecture 38 - Double Integrals - Part 1

Lecture 39 - Double Integrals - Part 2

Lecture 40 - Double Integrals - Part 3

Lecture 41 - Double Integrals - Part 4

Lecture 42 - Double Integrals - Part 5

Lecture 43 - Double Integrals - Part 6

Lecture 44 - Triple Integrals - Part 1

Lecture 45 - Triple Integrals - Part 2

Lecture 46 - Vector Functions

Lecture 47 - Vector and Scalar Fields

Lecture 48 - Divergence and Curl of a Vector Field

Lecture 49 - Line Integrals

Lecture 50 - Conservative Vector Fields

Lecture 51 - Green's Theorem

Lecture 52 - Surface Integrals - Part 1

Lecture 53 - Surface Integrals - Part 2

Lecture 54 - Stokes' Theorem

Lecture 55 - Divergence Theorem

Lecture 56 - Application of Derivatives

Lecture 57 - Application of Derivatives (Continued...)

Lecture 58 - Properties of Gradient, Divergence and Curl

Lecture 59 - Properties of Gradient, Divergence and Curl (Continued...)

Lecture 60 - Curl and Integrals