NPTEL : NOC:Introduction to Classical Mechanics (Physics)

Co-ordinators : Prof. Anurag Tripathi


Lecture 1 - Introduction. Symmetries of space and time

Lecture 2 - Generalized coordinates and degrees of freedom

Lecture 3 - Virtual Work

Lecture 4 - Virtual Work (rigid body)

Lecture 5 - d'Alembert Principle

Lecture 6 - Euler Lagrange Equation for a holonomic system

Lecture 7 - Euler Lagrange Equations. Examples

Lecture 8 - Euler Lagrange Equations. Examples (Continued...)

Lecture 9 - Properties of Lagrangian

Lecture 10 - Kinetic term in generalized coordinates

Lecture 11 - Cyclic coordinates

Lecture 12 - Conservation laws - Conservation of Energy

Lecture 13 - Energy Function, Jacobi's Integral

Lecture 14 - Momemtum conservation

Lecture 15 - Matrices and all that

Lecture 16 - Matrices, Forms, and all that

Lecture 17 - Principal axis transformation

Lecture 18 - Small Oscilaltions

Lecture 19 - Oscillations, Normal Coordinates

Lecture 20 - Oscillations, Triatomic molecule

Lecture 21 - Triatomic molecule normal coordinates

Lecture 22 - Coupled pendulums, normal modes

Lecture 23 - Coupled pendulums, Beats

Lecture 24 - Oscillations, General solution

Lecture 25 - Forced oscillations

Lecture 26 - Damped oscillations

Lecture 27 - Forced Damped oscillations

Lecture 28 - one dimensional systems

Lecture 29 - Two-body problem

Lecture 30 - Two-body problem, Kepler's second law

Lecture 31 - Two-body problem, Kepler problem

Lecture 32 - Two-body problem, Conic Sections in Polar Coordinates

Lecture 33 - Two-body problem, Ellipse in polar coordinates

Lecture 34 - Orbits in Kepler Problem

Lecture 35 - Apsidal distances, eccentricity of orbits

Lecture 36 - Kepler's Third law; Laplace-Runge-Lenz vector

Lecture 37 - Rigid Body, degrees of freedom

Lecture 38 - Rigid Body, Transfromation matrix

Lecture 39 - Rigid Body, Euler Angles

Lecture 40 - Parameterization using Euler Angles

Lecture 41 - Rigid Body, Euler's Theorem

Lecture 42 - General motion of a rigid body

Lecture 43 - Moment of Inertia Tensor

Lecture 44 - Principal Moments

Lecture 45 - Langrangian of a rigid body

Lecture 46 - Motion of a free symmetric top

Lecture 47 - Angular velocity using Euler angles

Lecture 48 - Lagrangian of a heavy symmetric top

Lecture 49 - First integrals of a heavy symmetric top

Lecture 50 - Nutation and Precission of a heavy symmetric top

Lecture 51 - Sleeping Top

Lecture 52 - Rotating Frames. Euler Equations

Lecture 53 - Calculus of Variations: Functionals

Lecture 54 - Method of Lagrange Multipliers

Lecture 55 - Calculus of Variations: Condition for extremum

Lecture 56 - Calculus of Variations: Several variables

Lecture 57 - Cartesian Tensors

Lecture 58 - Hamiltonian Mechanics: Hamilton's equations of motion

Lecture 59 - Hamiltonian Mechanics: Liouville's theorem

Lecture 60 - Hamiltonian Mechanics: Poisson Bracket

Lecture 61 - Hamiltonian Mechanics: Canonical Coordinates

Lecture 62 - Hamiltonian Mechanics: Generating Function of Canonical Transformations

Lecture 63 - Hamiltonian Mechanics: Generating functions of the 4 kinds

Lecture 64 - Examples of Generating Functions

Lecture 65 - Harmonic Oscillator (Canonical Transformations)

Lecture 66 - Invariance of Poisson Brackets

Lecture 67 - Normal modes of triatomic molecule using Mathematica