NPTEL : NOC:An Introduction to Point-Set-Topology - Part II (Mathematics)

Co-ordinators : Prof. Anant R Shastri


Lecture 1 - Welcome Speech

Lecture 2 - Preliminaries from Banach spaces

Lecture 3 - Differentiation on Banach spaces

Lecture 4 - Preliminaries from one-variable real analysis

Lecture 5 - Implicit and Inverse function theorems

Lecture 6 - Compact Hausdorff spaces

Lecture 7 - Local Compactness

Lecture 8 - Local Compactness (Continued...)

Lecture 9 - The retraction functor k(X)

Lecture 10 - Compactly generated spaces

Lecture 11 - Paracompactness

Lecture 12 - Partition of Unity

Lecture 13 - Paracompactness (Continued...)

Lecture 14 - Paracompactness (Continued...)

Lecture 15 - Various Notions of Compactness

Lecture 16 - Total Boundedness

Lecture 17 - Arzel`a- Ascoli Theorem

Lecture 18 - Generalities on Compactification

Lecture 19 - Alexandroffâ's compactifiction

Lecture 20 - Proper maps

Lecture 21 - Stone-Cech compactification

Lecture 22 - Stone-Weierstrassâ's Theorems

Lecture 23 - Real Stone-Weierstrass Theorem

Lecture 24 - Complex and extended Stone-Weierstrass theorem

Lecture 25 - (Missing)

Lecture 26 - Urysohnâ's Metrization theorem

Lecture 27 - Nagata Smyrnov Metrization theorem

Lecture 28 - Nets

Lecture 29 - Cofinal families subnets

Lecture 30 - Basics of Filters

Lecture 31 - Convergence Properties of Filters

Lecture 32 - Ultrafilters and Tychonoffâ's theorem

Lecture 33 - Ultraclosed filters

Lecture 34 - Wallman compactification

Lecture 35 - Wallman compactification (Continued...)

Lecture 36 - Global Separation of Sets

Lecture 37 - More examples

Lecture 38 - Knaster-Kuratowski Example

Lecture 39 - Separation of Sets (Continued...)

Lecture 40 - Definition of dimension and examples

Lecture 41 - Dimensions of subspaces and Unions

Lecture 42 - Sum theorem for higher dimensions

Lecture 43 - Analytic Proof of Brouwerâ's Fixed Point Theorem

Lecture 44 - Local Separation to Global Separation

Lecture 45 - Partially Ordered sets

Lecture 46 - Principle of Transfinite Induction

Lecture 47 - Order topology

Lecture 48 - Ordinals

Lecture 49 - Ordinal Topology (Continued...)

Lecture 50 - The Long Line

Lecture 51 - Motivation and definition

Lecture 52 - The Exponential Correspondence

Lecture 53 - An Application to Quotient Maps

Lecture 54 - Groups of Homeomoprhisms

Lecture 55 - Definition and Exampels of Manifolds

Lecture 56 - Manifolds with Boundary

Lecture 57 - Homogeneity

Lecture 58 - Homogeneity (Continued...)

Lecture 59 - Classification of 1-dim. manifolds

Lecture 60 - Classification of 1-dim. Manifolds (Continued...)

Lecture 61 - Surfaces

Lecture 62 - Connected Sum