NPTEL : NOC:Computational Electromagnetics (Electrical Engineering)

Co-ordinators : Prof. Uday Khankhoje


Lecture 1 - Chain rule of differentiation

Lecture 2 - Gradient, Divergence, and Curl operators

Lecture 3 - Common theorems in vector calculus

Lecture 4 - Corollaries of these theorems

Lecture 5 - Mathematical History

Lecture 6 - Different regimes of Maxwell's equations

Lecture 7 - Different ways of solving them

Lecture 8 - Maxwell's Equations

Lecture 9 - Boundary Conditions

Lecture 10 - Uniqueness Theorem

Lecture 11 - Equivalence Theorem

Lecture 12 - Simple Numerical Integration

Lecture 13 - Interpolating a Function

Lecture 14 - Gauss Quadrature

Lecture 15 - Line Charge Problem

Lecture 16 - Solving the Integral Equation

Lecture 17 - Basis Functions

Lecture 18 - Helmholtz Equation

Lecture 19 - Solving Helmholtz Equation

Lecture 20 - Huygen's principle and the Extinction theorem

Lecture 21 - Formulating the integral equations

Lecture 22 - Conclusions of surface integral equations

Lecture 23 - Motivations for Green's functions

Lecture 24 - A one-dimensional example

Lecture 25 - 1-D example: alternate representation

Lecture 26 - 2-D wave example : finding solution

Lecture 27 - 2-D wave example : boundary conds

Lecture 28 - 2-D example : Evaluating Constants - Part 1

Lecture 29 - 2-D example : Evaluating Constants - Part 2

Lecture 30 - 3-D example

Lecture 31 - Motivation for MoM

Lecture 32 - Linear Vector Spaces

Lecture 33 - Formulating Method of Moments

Lecture 34 - Surface Integral Equations: Recap

Lecture 35 - Surface Integral Equations: Evaluating the Integrals - Part 1

Lecture 36 - Surface Integral Equations: Evaluating the Integrals - Part 2

Lecture 37 - Surface Integral Equations: Conclusion

Lecture 38 - Volume Integral Equations:Setting Up

Lecture 39 - Volume Integral Equations:Solving - Part 1

Lecture 40 - Volume Integral Equations:Solving - Part 2

Lecture 41 - Volume Integral Equations:Summary

Lecture 42 - Surface integral equations for PEC

Lecture 43 - Surface v/s volume integral equations

Lecture 44 - Definition of radar cross-section

Lecture 45 - Computational Considerations

Lecture 46 - History and Overview of the FEM

Lecture 47 - Basic framework of FEM

Lecture 48 - 1D Basis Functions

Lecture 49 - 2D Basis Functions

Lecture 50 - Weak form of 1D-FEM - Part 1

Lecture 51 - Weak form of 1D-FEM - Part 2

Lecture 52 - Generating System of Equations for 1D FEM

Lecture 53 - 1D wave equation: Formulation

Lecture 54 - 1D Wave Equation: Boundary Conditions

Lecture 55 - 1D Wave Equation: Basis and testing functions

Lecture 56 - 1D Wave Equation: Matrix assembly

Lecture 57 - 2D FEM Shape Functions

Lecture 58 - Converting to Weak Form (2D FEM)

Lecture 59 - Radiation Boundary Condition

Lecture 60 - Total field formulation

Lecture 61 - Scattered field formulation

Lecture 62 - Comparing total and scattered field formulation

Lecture 63 - Matrix assembly - Part 1

Lecture 64 - Matrix assembly - Part 2

Lecture 65 - Computing Far Field

Lecture 66 - Numerical Aspects of 2D FEM

Lecture 67 - Summary of FEM Procedure

Lecture 68 - Introduction to FDTD

Lecture 69 - 2D FDTD Formulation : Stencil

Lecture 70 - 2D FDTD Formulation : Time Stepping

Lecture 71 - 2D FDTD Formulation : Divergence Conditions

Lecture 72 - Stability Criteria - Part 1

Lecture 73 - Stability Criteria - Part 2

Lecture 74 - Stability Criteria - Higher Dimensions

Lecture 75 - Accuracy Considerations - 1D

Lecture 76 - Accuracy Considerations - Higher Dimensions

Lecture 77 - Dealing with non-dispersive dielectric media

Lecture 78 - Dealing with dispersive dielectric media

Lecture 79 - Debye Model - Part 1

Lecture 80 - Debye Model - Part 2

Lecture 81 - Absorbing Boundary Conditions - 1D

Lecture 82 - Absorbing Boundary Conditions - 2D

Lecture 83 - Implementing ABC in FDTD

Lecture 84 - Failure of ABC

Lecture 85 - Perfectly Matched Layers (PML) - Introduction

Lecture 86 - Implementing PML using Coordinate Stretching

Lecture 87 - PML - Phase Matching

Lecture 88 - PML - Tangential Boundary Conditions

Lecture 89 - Perfectly Matched Interface

Lecture 90 - PML theory - Summary

Lecture 91 - Implementing PML into FDTD - Part 1

Lecture 92 - Implementing PML into FDTD - Part 2

Lecture 93 - Sources in FDTD - Currents

Lecture 94 - Sources in FDTD - Part 2

Lecture 95 - Summary of FDTD

Lecture 96 - MEEP : FDTD in action

Lecture 97 - Inverse Problems - Introduction

Lecture 98 - Inverse Problems - Mathematical Formulation

Lecture 99 - Inverse Problems - Challenges

Lecture 100 - Inverse Problems - Non-Linearity

Lecture 101 - Inverse Problems - Summary

Lecture 102 - Antennas - Potential formulation

Lecture 103 - Antennas - Hertz Dipole - Part 1

Lecture 104 - Antennas - Hertz Dipole - Part 2

Lecture 105 - Antennas - Radiation Patterns

Lecture 106 - Antennas - Motivation for CEM

Lecture 107 - Antennas - Pocklington’s Integral Equation - Part 1

Lecture 108 - Antennas - Pocklington’s Integral Equation - Part 2

Lecture 109 - Antennas - Source Modeling

Lecture 110 - Antennas - Circuit Model

Lecture 111 - Antennas - MoM details

Lecture 112 - Antennas - Mutual Coupling - Part 1

Lecture 113 - Antennas - Mutual Coupling - Part 2

Lecture 114 - Hybrid Methods - Motivation

Lecture 115 - Finite Element-Boundary Integral - Part 1

Lecture 116 - Finite Element-Boundary Integral - Part 2

Lecture 117 - Finite Element-Boundary Integral - Part 3