NPTEL : NOC:Statistical Signal Processing (Electrical Engineering)

Co-ordinators : Prof. Prabin Kumar Bora


Lecture 1 - Overview of Statistical Signal Processing

Lecture 2 - Probability and Random Variables

Lecture 3 - Linear Algebra of Random Variables

Lecture 4 - Random Processes

Lecture 5 - Linear Shift Invariant Systems with Random Inputs

Lecture 6 - White Noise and Spectral Factorization Theorem

Lecture 7 - Linear Models of Random Signals

Lecture 8 - Estimation Theory - 1

Lecture 9 - Estimation Theory - 2: MVUE and Cramer Rao Lower Bound

Lecture 10 - Cramer Rao Lower Bound 2

Lecture 11 - MVUE through Sufficient Statistic - 1

Lecture 12 - MVUE through Sufficient Statistic - 2

Lecture 13 - Method of Moments and Maximum Likelihood Estimators

Lecture 14 - Properties of Maximum Likelihood Estimator (MLE)

Lecture 15 - Bayesian Estimators - 1

Lecture 16 - Bayesian Estimators - 2

Lecture 17 - Optimal linear filters: Wiener Filter

Lecture 18 - FIR Wiener filter

Lecture 19 - Non-Causual IIR Wiener Filter

Lecture 20 - Causal IIR Wiener Filter

Lecture 21 - Linear Prediction of Signals - 1

Lecture 22 - Linear Prediction of Signals - 2

Lecture 23 - Linear Prediction of Signals - 3

Lecture 24 - Review Assignment - 1

Lecture 25 - Adaptive Filters - 1

Lecture 26 - Adaptive Filters - 2

Lecture 27 - Adaptive Filters - 3

Lecture 28 - Review Assignment - 2

Lecture 29 - Adaptive Filters - 4

Lecture 30 - Adaptive Filters - 4 (Continued...)

Lecture 31 - Review Assignment - 3

Lecture 32 - Recursive Least Squares (RLS) Adaptive Filter - 1

Lecture 33 - Recursive Least Squares (RLS) Adaptive Filter - 2

Lecture 34 - Review Assignment - 4

Lecture 35 - Kalman Filter - 1

Lecture 36 - Vector Kalman Filter

Lecture 37 - Linear Models of Random Signals

Lecture 38 - Review - 1

Lecture 39 - Review - 2