NPTEL : NOC:Advanced Concepts in Fluid Mechanics (Mechanical Engineering)

Co-ordinators : Prof. Aditya Bandopadhyay


Lecture 1 - Eulerian and Lagrangian Description of Fluid Motion

Lecture 2 - Lines of Flow Visualization and Acceleration of Flow

Lecture 3 - Angular Deformation of Fluid Elements

Lecture 4 - Linear and Volumetric Deformation; Perspectives from Mass Conservation

Lecture 5 - Continuity Education in Integral Form : Stream Function and Velocity Potential

Lecture 6 - Euler Equation for Inviscid Flow

Lecture 7 - Bernoulli's Equation

Lecture 8 - Examples of Bernoulli's Equation

Lecture 9 - Reynolds Transport Equation

Lecture 10 - Reynolds Transport Theorem : Mass and Linear Momentum Conservation

Lecture 11 - Reynolds transport theorem : arbitrarily moving control volume

Lecture 12 - Reynolds transport theorem : angular momentum conservation

Lecture 13 - Introduction to traction vector and stress tensor

Lecture 14 - Cauchy/Navier equation

Lecture 15 - Navier Stokes equation

Lecture 16 - Navier Stokes equation (Continued...)

Lecture 17 - Some exact solutions of the Navier Stokes equation

Lecture 18 - Interfacial boundary conditions and example of thin film flows

Lecture 19 - Exact solutions of the Navier Stokes equations in cylindrical polar coordinates

Lecture 20 - Exact solutions of the Navier Stokes equation for some unsteady flows

Lecture 21 - Confined oscillatory flows

Lecture 22 - Introduction to Turbulence

Lecture 23 - Statistical Treatment of Turbulence and Near - Wall Velocity Profiles

Lecture 24 - Introduction to Boundary Layer Theory

Lecture 25 - Similarity Solution of Boundary Layer Equation

Lecture 26 - Momentum Integral Method

Lecture 27 - Application of Momentum Integral Method and Boundary Layer Separation

Lecture 28 - Potential Flow

Lecture 29 - Potential Flow (Continued...)

Lecture 30 - Potential Flow (Continued...)

Lecture 31 - Potential Flow (Continued...)

Lecture 32 - Potential Flow (Continued...)

Lecture 33 - Potential Flow (Continued...)

Lecture 34 - Stokes Flow past a Sphere

Lecture 35 - Stokes Flow past a Sphere (Continued...)

Lecture 36 - Stokes Flow past a Sphere (Continued...)

Lecture 37 - Lubrication Theory

Lecture 38 - Lubrication Theory (Continued...)

Lecture 39 - Lubrication Theory (Continued...)

Lecture 40 - Thin Film Dynamics

Lecture 41 - Thin Film Dynamics (Continued...)

Lecture 42 - Thin Film Dynamics (Continued...)

Lecture 43 - Thin Film Dynamics (Continued...)

Lecture 44 - Thin Film Dynamics (Continued...)

Lecture 45 - Thin Film Dynamics (Continued...)

Lecture 46 - Thin Film Dynamics (Continued...)

Lecture 47 - Thin Film Dynamics (Continued...)

Lecture 48 - Compressible Flows

Lecture 49 - Compressible Flows (Continued...)

Lecture 50 - Compressible Flows (Stagnation Properties)

Lecture 51 - Compressible Flows (Stagnation Properties, Variable Area)

Lecture 52 - Compressible Flows (Variable Area)

Lecture 53 - Compressible Flows (Variable Area)

Lecture 54 - Compressible Flows (Normal Shock)

Lecture 55 - Compressible Flows (Normal Shock) (Continued...)

Lecture 56 - Compressible Flows (Converging Nozzle)

Lecture 57 - Compressible Flows (Converging Diverging Nozzle)

Lecture 58 - Compressible Flows (Converging Diverging Nozzle) (Continued...)

Lecture 59 - Compressible Flows with Friction