NPTEL : NOC:Computational Number Theory and Algebra (Mathematics)

Co-ordinators : Prof. Nitin Saxena


Lecture 1 - Introduction: Computation and Algebra

Lecture 2 - Background

Lecture 3 - GCD algorithm and Chinese Remainder Theorem

Lecture 4 - Fast polynomial multiplication

Lecture 5 - Fast polynomial multiplication (Continued...)

Lecture 6 - Fast integer multiplication and division

Lecture 7 - Fast integer arithmetic and matrix multiplication

Lecture 8 - Matrix Multiplication Tensor

Lecture 9 - Polynomial factoring over finite fields: Irreducibility testing

Lecture 10 - Equi-degree factorization and idea of Berlekamp's algorithm

Lecture 11 - Berlekamp's algorithm as a reduction method

Lecture 12 - Factoring over finite fields: Cantor-Zassenhaus algorithm

Lecture 13 - Reed Solomon Error Correcting Codes

Lecture 14 - List Decoding

Lecture 15 - Bivariate Factorization - Hensel Lifting

Lecture 16 - Bivariate polynomial factoring (Continued...)

Lecture 17 - Multivariate Polynomial Factorization

Lecture 18 - Multivariate Factoring - Hilbert's Irreducibility Theorem

Lecture 19 - Multivariate factoring (Continued...)

Lecture 20 - Analysis of LLL algorithm

Lecture 21 - Analysis of LLL algorithm (Continued...)

Lecture 22 - Analysis of LLL-reduced basis algorithm and Introduction to NTRU cryptosystem

Lecture 23 - NTRU cryptosystem (Continued...) and Introduction to Primality testing

Lecture 24 - Randomized Primality testing: Solovay-Strassen and Miller-Rabin tests

Lecture 25 - Deterministic primality test (AKS) and RSA cryptosystem

Lecture 26 - Integer factoring: Smooth numbers and Pollard's rho method

Lecture 27 - Pollard's p-1, Fermat, Morrison-Brillhart, Quadratic and Number field sieve methods