NPTEL : NOC:Integral and Vector Calculus (Mathematics)

Co-ordinators : Prof. Hari Shankar Mahato


Lecture 1 - Partition, Riemann intergrability and One example

Lecture 2 - Partition, Riemann intergrability and One example (Continued...)

Lecture 3 - Condition of integrability

Lecture 4 - Theorems on Riemann integrations

Lecture 5 - Examples

Lecture 6 - Examples (Continued...)

Lecture 7 - Reduction formula

Lecture 8 - Reduction formula (Continued...)

Lecture 9 - Improper Integral

Lecture 10 - Improper Integral (Continued...)

Lecture 11 - Improper Integral (Continued...)

Lecture 12 - Improper Integral (Continued...)

Lecture 13 - Introduction to Beta and Gamma Function

Lecture 14 - Beta and Gamma Function

Lecture 15 - Differentiation under Integral Sign

Lecture 16 - Differentiation under Integral Sign (Continued...)

Lecture 17 - Double Integral

Lecture 18 - Double Integral over a Region E

Lecture 19 - Examples of Integral over a Region E

Lecture 20 - Change of variables in a Double Integral

Lecture 21 - Change of order of Integration

Lecture 22 - Triple Integral

Lecture 23 - Triple Integral (Continued...)

Lecture 24 - Area of Plane Region

Lecture 25 - Area of Plane Region (Continued...)

Lecture 26 - Rectification

Lecture 27 - Rectification (Continued...)

Lecture 28 - Surface Integral

Lecture 29 - Surface Integral (Continued...)

Lecture 30 - Surface Integral (Continued...)

Lecture 31 - Volume Integral, Gauss Divergence Theorem

Lecture 32 - Vector Calculus

Lecture 33 - Limit, Continuity, Differentiability

Lecture 34 - Successive Differentiation

Lecture 35 - Integration of Vector Function

Lecture 36 - Gradient of a Function

Lecture 37 - Divergence and Curl

Lecture 38 - Divergence and Curl Examples

Lecture 39 - Divergence and Curl important Identities

Lecture 40 - Level Surface Relevant Theorems

Lecture 41 - Directional Derivative (Concept and Few Results)

Lecture 42 - Directional Derivative (Concept and Few Results) (Continued...)

Lecture 43 - Directional Derivatives, Level Surfaces

Lecture 44 - Application to Mechanics

Lecture 45 - Equation of Tangent, Unit Tangent Vector

Lecture 46 - Unit Normal, Unit binormal, Equation of Normal Plane

Lecture 47 - Introduction and Derivation of Serret-Frenet Formula, few results

Lecture 48 - Example on binormal, normal tangent, Serret-Frenet Formula

Lecture 49 - Osculating Plane, Rectifying plane, Normal plane

Lecture 50 - Application to Mechanics, Velocity, speed, acceleration

Lecture 51 - Angular Momentum, Newton's Law

Lecture 52 - Example on derivation of equation of motion of particle

Lecture 53 - Line Integral

Lecture 54 - Surface integral

Lecture 55 - Surface integral (Continued...)

Lecture 56 - Green's Theorem and Example

Lecture 57 - Volume integral, Gauss theorem

Lecture 58 - Gauss divergence theorem

Lecture 59 - Stoke's Theorem

Lecture 60 - Overview of Course