NPTEL : NOC:Fluid Dynamics for Astrophysics (Physics)

Co-ordinators : Prof. Prasad Subramanian


Lecture 1 - Introduction to the course

Lecture 2 - Continuum hypothesis, distribution function and stress-viscosity relation

Lecture 3 - Continuum hypothesis, distribution function and stress-viscosity relation - Recap

Lecture 4 - Fluid Kinematics

Lecture 5 - Fluid Kinematics - Recap

Lecture 6 - Conservation laws: Mass conservation and incomprehensibility

Lecture 7 - Conservation laws: Momentum conservation and Euler equation

Lecture 8 - Conservation laws - Recap

Lecture 9 - Potential flows

Lecture 10 - Bernoulli constant, its applications and voracity equation

Lecture 11 - Recap - Potential flows, Bernoulli constant and its applications

Lecture 12 - Voracity dynamics -- Kelvin's voracity theorem and Magus effect

Lecture 13 - Navier-Stokes equation

Lecture 14 - Navier-Stokes equation (Continued....) and energy equation

Lecture 15 - Energy equation in a conservative form

Lecture 16 - Boundary conditions in Navier-Stokes equation, d'Alembert's paradox

Lecture 17 - Poiseuille flow, deriving viscosity from microscopics

Lecture 18 - Dimensionless numbers -- Mach number, Reynolds number

Lecture 19 - DimDimensionless numbers (Continued...) -- plasma beta, magnetic Reynolds number, Alfven Mach number, Prandl numberensionless numbers -- Mach number, Reynolds number

Lecture 20 - Reynolds number and dynamic similarity

Lecture 21 - Reynolds number recap, Low Re flows, and drag on a sphere (Stokes law)

Lecture 22 - High Re flows -- turbulent drag law, vortex shedding and drag crisis

Lecture 23 - Lift on a body, introduction to compressible flows

Lecture 24 - Compressible flows -- derivation of sound speed and dispersion relation

Lecture 25 - Subsonic and supersonic flows

Lecture 26 - Propagation of sonic information, shock tube problem and piston problem

Lecture 27 - Criterion for neglect of compressibility, method of characteristics

Lecture 28 - Shock thickness

Lecture 29 - Shock thickness recap, shock jump conditions

Lecture 30 - Shock jump conditions (Continued...), transonic 1D flows, converging/diverging channels

Lecture 31 - Coverging/diverging channels, de Laval nozzle and its application to astrophysical jets

Lecture 32 - Spherically symmetric transonic flows

Lecture 33 - Spherically symmetric transonic flows (Continued...)

Lecture 34 - Solar wind : Parker's solution

Lecture 35 - Solar wind : Modifications in Parker's solution

Lecture 36 - Spherical accretion onto a compact object : Eddington luminosity and accretion rate

Lecture 37 - Spherical accretion onto a compact object : Solutions for flow properties

Lecture 38 - Spherical accretion (Continued...), disk accretion--Roche lobe overflow

Lecture 39 - Disk accretion : Mass conservation and vertical hydrostatic equilibrium

Lecture 40 - Disk accretion : Removal of angular momentum, Shakura-Sunyaev viscosity parameter

Lecture 41 - Disk accretion : Viscous dissipation and the energy equation, two-temperature criterion

Lecture 42 - Particle acceleration in astrophysical settings : Shocks and non-thermal energy distribution

Lecture 43 - Particle acceleration in astrophysical settings : Diffusive shock acceleration

Lecture 44 - Spherical blast waves : Bomb explosion and supernova explosion

Lecture 45 - Spherical blast waves : Sedov-Taylor solution

Lecture 46 - Spherical blast waves : Sedov-Taylor solution (Continued....)

Lecture 47 - Magnetohydrodynamics (MHD) : Introduction

Lecture 48 - Magnetohydrodynamics (MHD) : The induction equation

Lecture 49 - Magnetohydrodynamics (MHD) : Currents in MHD, momentum equation and magnetic stress tensor

Lecture 50 - Magnetohydrodynamics (MHD) : Magnetic stresses and magnetic buoyancy

Lecture 51 - Magnetohydrodynamics (MHD) : Plasma beta, force-free fields and potential configurations

Lecture 52 - Magnetohydrodynamics (MHD) : Magnetic flux-freezing

Lecture 53 - Magnetohydrodynamics (MHD) : Magnetic flux-freezing (Continued....), magnetic dynamos

Lecture 54 - Magnetohydrodynamics (MHD) : Dynamo theory

Lecture 55 - Magnetohydrodynamics (MHD) : Waves in MHD - Alfven waves

Lecture 56 - Magnetohydrodynamics (MHD) : Waves in MHD - Alfven waves and magnetosonic waves

Lecture 57 - Magnetohydrodynamics (MHD) : Waves in MHD - Magnetosonic waves

Lecture 58 - Magnetohydrodynamics (MHD) : Shocks in MHD

Lecture 59 - Magnetohydrodynamics (MHD) : Shocks in MHD - Shock jump conditions

Lecture 60 - Non-ideal MHD : Introduction to magnetic reconnection

Lecture 61 - Non-ideal MHD : Magnetic reconnection - The Sweet-Parker model

Lecture 62 - Non-ideal MHD : Magnetic reconnection - The Petscheck model

Lecture 63 - Sun's atmosphere : Solar corona and the coronal heating problem

Lecture 64 - Solar eruptions : Coronal Mass Ejections (CMEs) and solar flares