NPTEL : NOC:Introduction to Astrophysical Fluids (Physics)

Co-ordinators : Prof. Supratik Banerjee


Lecture 1 - General introduction

Lecture 2 - Phase space and Liouville's theorem

Lecture 3 - Collisionless Boltzmann equation

Lecture 4 - Boltzmann equation for collisional system - I

Lecture 5 - Boltzmann equation for collisional system - II

Lecture 6 - Equilibrium distribution function - I

Lecture 7 - Equilibrium distribution function - II

Lecture 8 - Derivation of moment equations - I

Lecture 9 - Derivation of moment equations - II

Lecture 10 - Application of moment equations in collisionless systems

Lecture 11 - Derivation of ideal fluid equations

Lecture 12 - Macroscopic forces on an ideal fluid

Lecture 13 - Properties of ideal fluid

Lecture 14 - Kevin's vorticity theorem

Lecture 15 - Conservative form and invariants in ideal fluids

Lecture 16 - Steady flow, streamlines and stream function

Lecture 17 - Departure from Maxwellian distribution

Lecture 18 - Derivation of real fluid equations

Lecture 19 - Hydrostatics: Model of solar corona

Lecture 20 - Stellar/solar wind

Lecture 21 - Accretion disks - I

Lecture 22 - A small digression: Newtonian fluids

Lecture 23 - Accretion disk - II

Lecture 24 - Weak perturbation in a compressible fluid: sound wave

Lecture 25 - Effect of nonlinearity: shocks

Lecture 26 - Supernova explosion and spherical blast waves - I

Lecture 27 - Supernova explosion and spherical blast waves - II

Lecture 28 - de Laval nozzle and extragalactic jets

Lecture 29 - Convective instability and Swarzschild stability criterian

Lecture 30 - Rayleigh Benard convection - I

Lecture 31 - Rayleigh Benard convection - II

Lecture 32 - Jeans instability

Lecture 33 - Waves and instabilities in a two-fluid interface - I

Lecture 34 - Waves and instabilities in a two-fluid interface - II

Lecture 35 - Oscillations of stars

Lecture 36 - Oscillation of stars (Continued...)

Lecture 37 - Rotation in astrofluids and Rayleigh criterion

Lecture 38 - Fluid dynamics in a rotating frame of reference

Lecture 39 - Vorticity theorem in rotating frame and Taylor-Proudman theorem

Lecture 40 - Effect of rotation on a self gravitating mass

Lecture 41 - Effect of rotation in stars

Lecture 42 - Introduction to Plasmas

Lecture 43 - Description of Plasma

Lecture 44 - Kinetic to fluid picture of plasmas

Lecture 45 - MHD fluids: magnetic pressure, magnetic tension and plasma beta

Lecture 46 - Inviscid invariants in MHD

Lecture 47 - Inviscid invariants in MHD (Continued...)

Lecture 48 - Elsasser variables in MHD

Lecture 49 - Linear wave modes in MHD

Lecture 50 - MHD in space plasmas

Lecture 51 - Introduction to turbulence in fluids

Lecture 52 - Richardson-Kolmogorov phenomenology of turbulence

Lecture 53 - Turbulent diffusion

Lecture 54 - Turbulent viscosity

Lecture 55 - Turbulence in MHD fluids

Lecture 56 - Introduction to astrophysical dynamos

Lecture 57 - Anti-dynamo theorem and turbulent dynamos