NPTEL : Adaptive Signal Processing (Electronics and Communication Engineering)

Co-ordinators : Prof. Mrityunjoy Chakraborty


Lecture 1 - Introduction to Adaptive Filters

Lecture 2 - Introduction to Stochastic Processes

Lecture 3 - Stochastic Processes

Lecture 4 - Correlation Structure

Lecture 5 - FIR Wiener Filter (Real)

Lecture 6 - Steepest Descent Technique

Lecture 7 - LMS Algorithm

Lecture 8 - Convergence Analysis

Lecture 9 - Convergence Analysis (Mean Square)

Lecture 10 - Convergence Analysis (Mean Square)

Lecture 11 - Misadjustment and Excess MSE

Lecture 12 - Misadjustment and Excess MSE

Lecture 13 - Sign LMS Algorithm

Lecture 14 - Block LMS Algorithm

Lecture 15 - Fast Implementation of Block LMS Algorithm

Lecture 16 - Fast Implementation of Block LMS Algorithm

Lecture 17 - Vector Space Treatment to Random Variables

Lecture 18 - Vector Space Treatment to Random Variables

Lecture 19 - Orthogonalization and Orthogonal Projection

Lecture 20 - Orthogonal Decomposition of Signal Subspaces

Lecture 21 - Introduction to Linear Prediction

Lecture 22 - Lattice Filter

Lecture 23 - Lattice Recursions

Lecture 24 - Lattice as Optimal Filter

Lecture 25 - Linear Prediction and Autoregressive Modeling

Lecture 26 - Gradient Adaptive Lattice

Lecture 27 - Gradient Adaptive Lattice

Lecture 28 - Introduction to Recursive Least Squares

Lecture 29 - RLS Approach to Adaptive Filters

Lecture 30 - RLS Adaptive Lattice

Lecture 31 - RLS Lattice Recursions

Lecture 32 - RLS Lattice Recursions

Lecture 33 - RLS Lattice Algorithm

Lecture 34 - RLS Using QR Decomposition

Lecture 35 - Givens Rotation

Lecture 36 - Givens Rotation and QR Decomposition

Lecture 37 - Systolic Implementation

Lecture 38 - Systolic Implementation

Lecture 39 - Singular Value Decomposition

Lecture 40 - Singular Value Decomposition

Lecture 41 - Singular Value Decomposition