NPTEL : NOC:Introduction to Finite Volume Methods-I (Aerospace Engineering)

Co-ordinators : Prof. Ashoke De


Lecture 1 - Introduction to Finite Volume Method

Lecture 2 - Governing Equations and Discretization

Lecture 3 - Boundary Conditions and Classification of PDEs

Lecture 4 - Mathematical Description of fluid flow - I

Lecture 5 - Mathematical description of fluid flow - II

Lecture 6 - Discretization Process - I

Lecture 7 - Discretization Process - II

Lecture 8 - Discretization Process - III

Lecture 9 - Taylor Series - I

Lecture 10 - Taylor Series - II

Lecture 11 - Derivatives and Errors - I

Lecture 12 - Derivatives and errors - II

Lecture 13 - Grid Transformation

Lecture 14 - Finite Volume Formulation - I

Lecture 15 - Finite Volume Formulation - II

Lecture 16 - Properties of discretized equations

Lecture 17 - Introduction to Finite Volume Mesh

Lecture 18 - Structured Mesh System

Lecture 19 - Unstructured Mesh System - I

Lecture 20 - Unstructured Mesh System - II

Lecture 21 - Properties of Unstructured Mesh - I

Lecture 22 - Properties of Unstructured Mesh - II

Lecture 23 - Finite Volume discretization of Diffusion Equation - I

Lecture 24 - Finite Volume discretization of Diffusion equation - II

Lecture 25 - Finite Volume discretization of Diffusion equation - III

Lecture 26 - Discretization of Diffusion Equation for Cartesian orthogonal systems - I

Lecture 27 - Discretization of Diffusion Equation for Cartesian orthogonal systems - II

Lecture 28 - Calculation of Diffusivity

Lecture 29 - Discretization of Diffusion Equation for non-Cartesian orthogonal systems - I

Lecture 30 - Discretization of Diffusion Equation for non-orthogonal systems - I

Lecture 31 - Discretization of Diffusion Equation for non-orthogonal systems - II

Lecture 32 - Discretization of Diffusion Equation for non-orthogonal systems - III

Lecture 33 - Gradient Calculation for Diffusion Equation - I

Lecture 34 - Gradient Calculation for Diffusion Equation - II

Lecture 35 - Gradient Calculation for Diffusion Equation - III

Lecture 36 - Properties of matrices - I

Lecture 37 - Properties of matrices - II

Lecture 38 - Error Analysis - I

Lecture 39 - Error Analysis - II

Lecture 40 - Error Analysis - III