NPTEL : NOC:Engineering Mathematics-I (Mathematics)

Co-ordinators : Prof. Jitendra Kumar


Lecture 1 - Rolle’s Theorem

Lecture 2 - Mean Value Theorems

Lecture 3 - Indeterminate Forms - Part 1

Lecture 4 - Indeterminate Forms - Part 2

Lecture 5 - Taylor Polynomial and Taylor Series

Lecture 6 - Limit of Functions of Two Variables

Lecture 7 - Evaluation of Limit of Functions of Two Variables

Lecture 8 - Continuity of Functions of Two Variables

Lecture 9 - Partial Derivatives of Functions of Two Variables

Lecture 10 - Partial Derivatives of Higher Order

Lecture 11 - Derivative and Differentiability

Lecture 12 - Differentiability of Functions of Two Variables

Lecture 13 - Differentiability of Functions of Two Variables (Continued...)

Lecture 14 - Differentiability of Functions of Two Variables (Continued...)

Lecture 15 - Composite and Homogeneous Functions

Lecture 16 - Taylor’s Theorem for Functions of Two Variables

Lecture 17 - Maxima and Minima of Functions of Two Variables

Lecture 18 - Maxima and Minima of Functions of Two Variables (Continued...)

Lecture 19 - Maxima and Minima of Functions of Two Variables (Continued...)

Lecture 20 - Constrained Maxima and Minima

Lecture 21 - Improper Integrals

Lecture 22 - Improper Integrals (Continued...)

Lecture 23 - Improper Integrals (Continued...)

Lecture 24 - Improper Integrals (Continued...)

Lecture 25 - Beta and Gamma Function

Lecture 26 - Beta and Gamma Function (Continued...)

Lecture 27 - Differentiation Under Integral Sign

Lecture 28 - Double Integrals

Lecture 29 - Double Integrals (Continued...)

Lecture 30 - Double Integrals (Continued...)

Lecture 31 - Integral Calculus Double Integrals in Polar Form

Lecture 32 - Integral Calculus Double Integrals: Change of Variables

Lecture 33 - Integral Calculus Double Integrals: Surface Area

Lecture 34 - Integral Calculus Triple Integrals

Lecture 35 - Integral Calculus Triple Integrals (Continued...)

Lecture 36 - System of Linear Equations

Lecture 37 - System of Linear Equations Gauss Elimination

Lecture 38 - System of Linear Equations Gauss Elimination (Continued...)

Lecture 39 - Linear Algebra - Vector Spaces

Lecture 40 - Linear Independence of Vectors

Lecture 41 - Vector Spaces Spanning Set

Lecture 42 - Vector Spaces Basis and Dimension

Lecture 43 - Rank of a Matrix

Lecture 44 - Linear Transformations

Lecture 45 - Linear Transformations (Continued....)

Lecture 46 - Eigenvalues and Eigenvectors

Lecture 47 - Eigenvalues and Eigenvectors (Continued...)

Lecture 48 - Eigenvalues and Eigenvectors (Continued...)

Lecture 49 - Eigenvalues and Eigenvectors (Continued...)

Lecture 50 - Eigenvalues and Eigenvectors: Diagonalization

Lecture 51 - Differential Equations - Introduction

Lecture 52 - First Order Differential Equations

Lecture 53 - Exact Differential Equations

Lecture 54 - Exact Differential Equations (Continued...)

Lecture 55 - First Order Linear Differential Equations

Lecture 56 - Higher Order Linear Differential Equations

Lecture 57 - Solution of Higher Order Homogeneous Linear Equations

Lecture 58 - Solution of Higher Order Non-Homogeneous Linear Equations

Lecture 59 - Solution of Higher Order Non-Homogeneous Linear Equations (Continued...)

Lecture 60 - Cauchy-Euler Equations